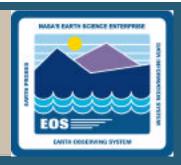
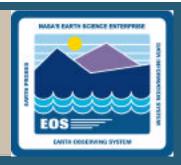


Multi-Host Support for Media Access

Don Brown



Requirements Summary

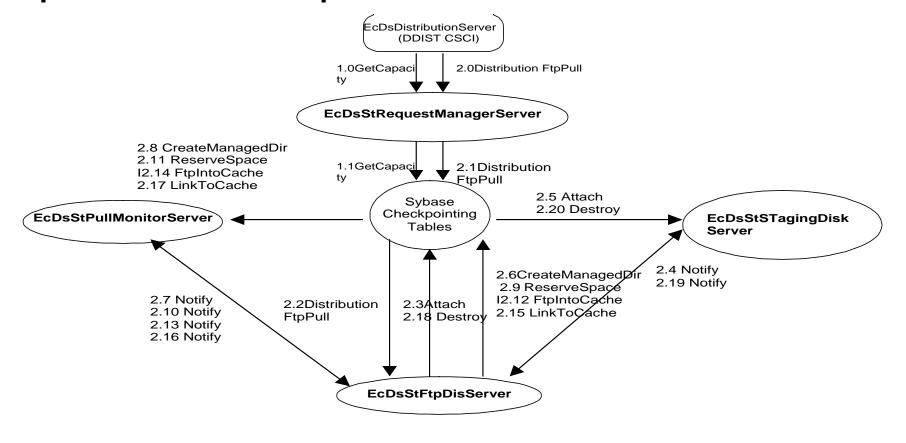

- Allow requests for a single media type to be handled by devices on different hosts.
- Allow for the re-routing of a request that has encountered a device error
- Allow operations staff to view the progress of ftp transfers
- Provide the operations staff with more status on media transfers
- Ensure that media resources are freed up on client termination
- Ensure that resources are made available on server start up
- Allow DAACs to handle peak loads

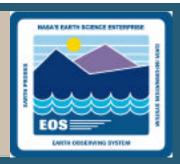
Key Design Drivers

- Maintain current client interfaces
- Use the STMGT Request Manager architecture
- Performance Requirements
 - Meet peak load needs
 - Meet data availability requirements
 - Maximize throughput to media device
- Provide scalable media resource access
- Monitor the state of the STMGT servers
- Restructure Media Configuration GUIs based on DAAC feedback

New SW Components

- One new CI STMGT Request Manager
 - STMGT Request Manager Processes
 - One STMGT Monitor Process for each Resource Manager
 - Additional Resource Manager(s) per media type


New HW Components


- No new hardware
- RAID attached to DIP hardware will be nfs mounted to facilitate request re-routing
- Multiple hosts with media devices attached

Ftp Distribution Example

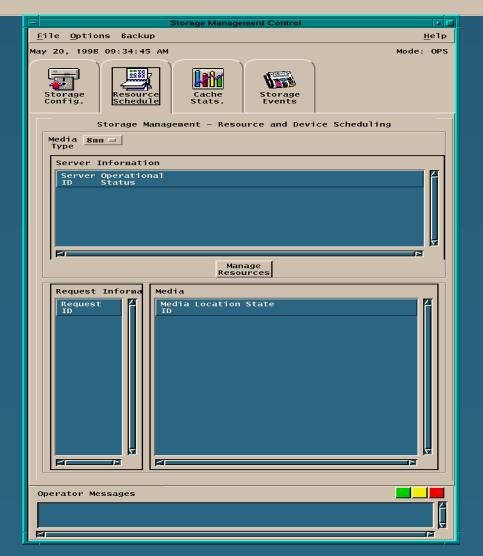
Reference DID 305 Figure 4.1.3.4-1

STMGT Configuration Tab

Configure Stacker Server

Stacker Configuration

Stacker Configuration	
Stacker ID:	
Stacker Model:	
Description:	
Stacker Path:	
Element Number:	
Stacker Number:	
Number Of Slots: Fixed Slot 0 automatically created - Do not include in count.	
Add Modify Delete	
Device Description Name Find	
OK Cancel	
Anna Anna Anna Anna Anna Anna Anna Anna	

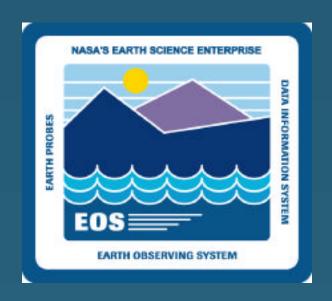


Device Drive Configuration

Device Drive Configuration
Server Id: EcDsSt8mmServer
Stacker: 8mmEXB210
Drive Number:
Device Name:
Model:
Capacity (Blocks):
SCSI Element Number:
Description:
Pathname:
OK Cancel

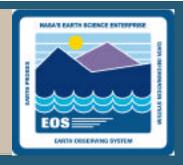
Resource Scheduling Tab

Stacker Status Pop up


Tape Information

DAAC Operational Impacts

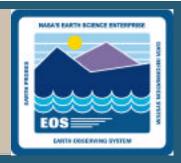
- Multiple servers for a given media type may have to be configured
- Configuration of Tape Stackers change based on DAAC feedback
- Progress of Ftp Transfers will be observable
- Media Stackers or devices for one media type will have to be apportioned to different hosts.



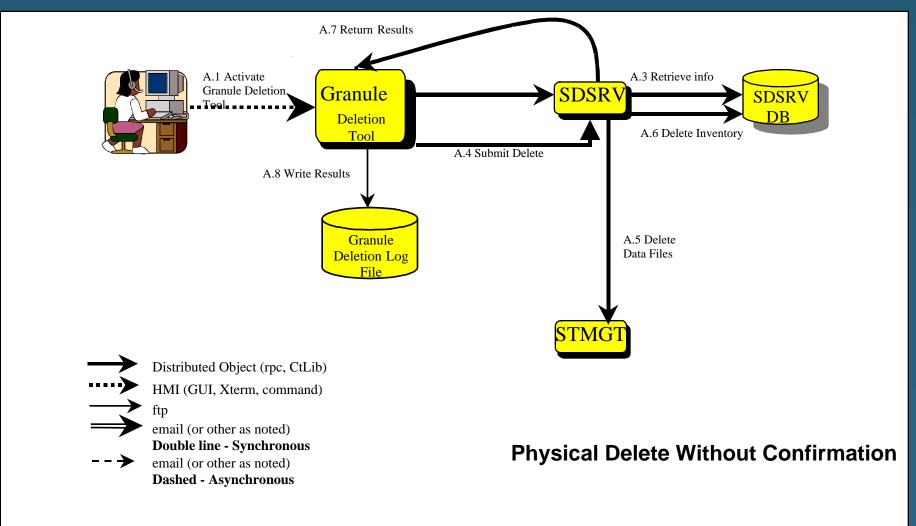
Granule Deletion Administration

Adrienne Dupree

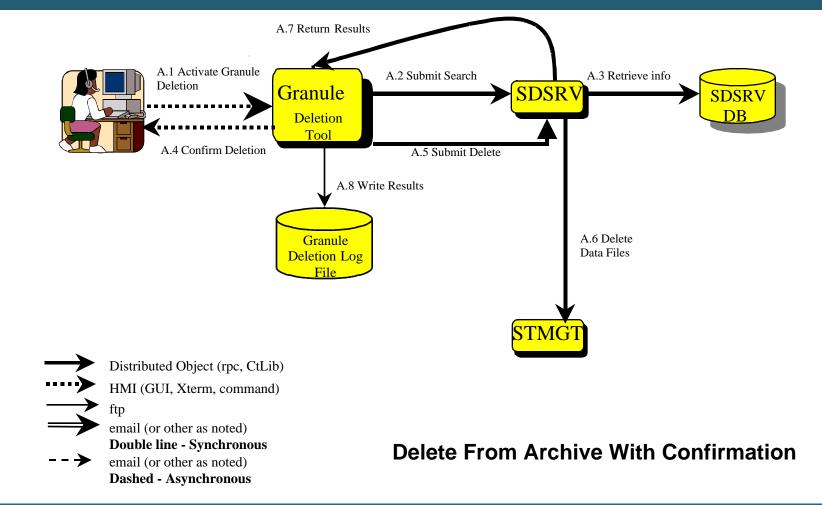
Requirements Summary


- Granule Deletion Administration supported by requirements in SDSRV and DMS
 - Delete granules from inventory and archive or just archive (DFA)
 - Specify criteria to delete granules
 - -ESDT ShortName, ESDT Version ID, Granule Insert Time Range
 - -File containing ESDT ShortName, ESDT Version ID, Local Granule ID
 - -File containing SDSRV Granule Ids (GEOIDS)
 - Deletion of associated granules if not referenced by any other granule
 - -Browse, PH, QA
 - Capability to display list of granules that will be deleted prior to deletion

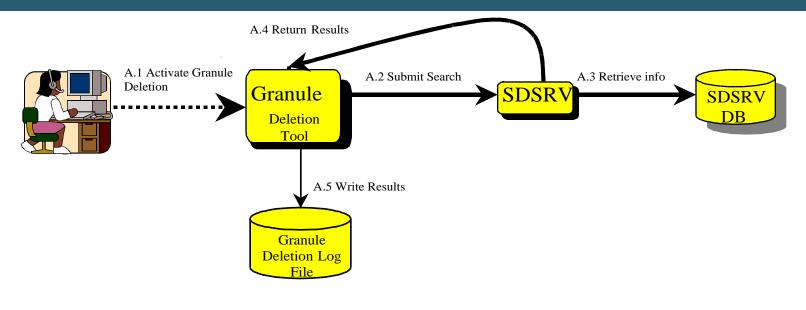
Key Design Drivers

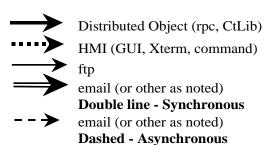

- Allow operators to delete products on demand using a command line utility
- Enforce referential integrity constraints during granule deletion
- Gracefully handle errors caused by concurrent deletions, searches, and acquires
- Allow for retry of an interrupted granule deletion operation

New SW Components



New standalone program EcDsGranuleDelete





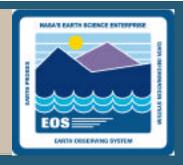


Display Candidate Granules for Deletion

- Physically delete granules and associated granules specified by Short Name and Version ID in the temporal range specified by begindate and enddate.
- Do not prompt for confirmation
- EcDsGranuleDelete
- -name <ESDT_ShortName>
- -version<ESDT VersionID>
- -begindate<date>
- -enddate<date>
- -log<logfilename>
- -physical
- -noprompt

- Delete from the Archive granules specified by Short Name and Version ID that were inserted between insertbegin and insertend
- Prompt for confirmation
- EcDsGranuleDelete
- -name <ESDT_ShortName>
- -version<ESDT VersionID>
- -insertbegin<date>
- -insertend<date>
- -log<logfilename>
- -DFA

- Delete from the Archive granules specified in the ASCII file that contains (GEOIDs)
 - SC:AST_L1BT.001:1001
- Prompt for confirmation
- EcDsGranuleDelete
- -geoidfile<filename>
- -log<logfilename>
- -DFA

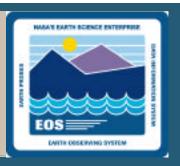


- Delete from the Inventory and the Archive granules and associated granules specified in the ASCII file that contains ShortName, Version ID, and Local Granule ID
 - AST_L1BT 1 tahoe_north_middle
- Do not prompt for confirmation
- EcDsGranuleDelete
- -localgranulefile<filename>
- -log<logfilename>
- -physical
- -noprompt

- Display the science granules that are candidates for deletion if the following file was given as input to the Granule Deletion tool
- EcDsGranuleDelete
- -localgranulefile<filename>
- -display

DAAC Operational Impacts

- DAAC Operations must secure this tool using Unix file security
- Must establish procedures to reduce the possibility of deleting granules that are referenced by Processing or still being accessed by the user
- Additional operational procedures will have to be executed to reclaim tapes



SDSRV Performance Enhancements

John Cockey

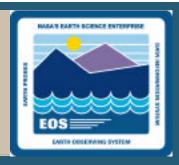
Requirements Summary

- Driven by capacity requirements outlined in the Drop 6A Release Plan <u>Appendix A - Release 6A Workload</u> Specification
- Key SDSRV related system performance areas:
 - Ingest Criteria
 - Production Criteria (PDPS Performance Briefing)
 - Distribution Criteria
 - Data Access Criteria

Benchmark Methodology

- Decompose Release 6A workload specification to system/subsystem "components" and "key resources".
- Examine elapsed time of components within
 - SDSRV and V0GW (Search, Integrated Browse)
 - by inference STMGT, DDIST
- roundtrip and detail level elapsed times
- Execute benchmark runs Assumptions single thread, hot cache runs within the EDF environment
- Compare Capacity(current performance) versus Demand (from workload spec.)
- Pinpoint areas where improvement is needed.
- Create 6A performance capabilities to mitigate performance shortfalls.

Key Design Drivers



- Ingest Criteria
 - Metadata and Data Product Insert
 - Metadata and Data Product Delete
 - Supports Inventory Cleanup, Reprocessing, ESDT specific processing (Landsat 7 DLL)
 - Metadata Update
 - Includes QA metadata update, ESDT specific processing

(ASTER Browse)

- Production Criteria
 - Metadata and Data Product Insert, Delete, Metadata Search
 - Acquire of Data Products, <u>Inspect</u> of Production Inputs
- Distribution Criteria Acquire (including Browse)
- Data Access Criteria Metadata Search, Inspect and Integrated Browse

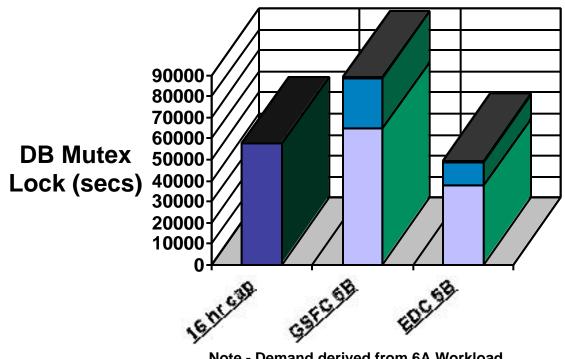
Benchmark Status

- Completed
 - Decomposition workload specification
 - Instrument code
 - Execute preliminary runs
- Create and prioritize 6A performance capabilities In process
- Finalize areas for improvement Nearing Completion
- Measure impacts of improvements
- Iterate analyze, change, measure

Key Design Drivers Goals

- Overall
 - Reduce Operating System context switching overhead
- Inserts
 - Reduce overall elapsed time by two-thirds+
- Deletes
 - Reduce overall elapsed time by two-thirds+
- Searches
 - Reduce contention to all update activity

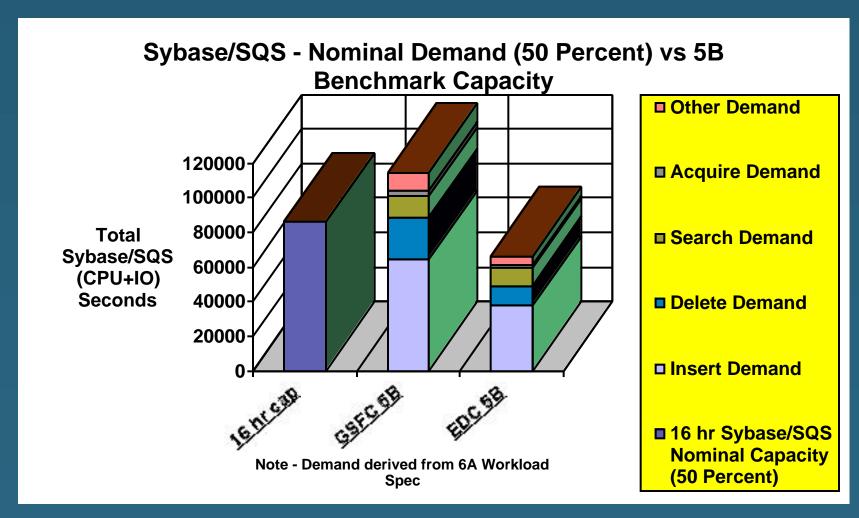
Key Design Drivers Target Areas



- SDSRV Database Mutex Lock
 - Reduce time spent in lock
- Sybase and Spatial Query Server usage
 - More efficiently use these important resources
- Other SDSRV functions examples
 - Mass deletes in maintenance window
 - Auto-inspect configurable
 - OS context switching overhead
 - Implement "Read Uncommitted"

SDSRV Workload Specification Rollup

DB Mutex Lock - Demand vs 5B Benchmark Capacity



Note - Demand derived from 6A Workload Spec

- Update Demand
- **Delete Demand**
- □ Insert Demand
- 16 hr DB Mutex Capacity

SDSRV Workload Specification Rollup

Action Plan Sample options being considered

1 Issue: Time spent in DB Mutex during Inserts ~.9 fixed +.05 per PSA seconds* (1.5 for MODAPPS granule; 4.0 for L70RWRS)*

Action: Reduce SQS use - implement 2 phase insert transaction

Estimated Improvement: ~10-15 times improvement

Action: Reduce RPCs to Sybase/SQS - Batch SQL Calls to Sybase

Estimated Improvement : ~ .2 to .4 seconds / granule

2 Issue: Delete directly contends with Insert - Reduce Impact to "prime time" operations

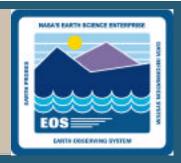
Action: logical delete now (timestamp), defer physical delete to scheduled window to reduce DB lock contention/overall resource usage

Estimated Improvement: ~4 times less contention; ~ 3 times better throughput

*Note - see Benchmark Assumptions, slide 3

Action Plan (continued)

3 Issue: Current Delete about 3.5 seconds*
Action: Mass delete direct to SQL Server during maintenance window
Estimated Improvement: from 1.7 to about .2 seconds/granule*


4 Issue: V0GW Inspect overhead high for Searches

Estimated Improvement: ~.36 seconds/granule returned from a search

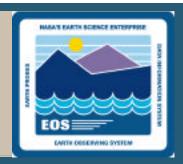
5 Issue: Reduce impact of OS context switching overhead Action: Lower impact of malloc()/RWCString overhead Estimated Improvement: Significant, much better concurrent CPU usage results

*Note - see Benchmark Assumptions, slide 3

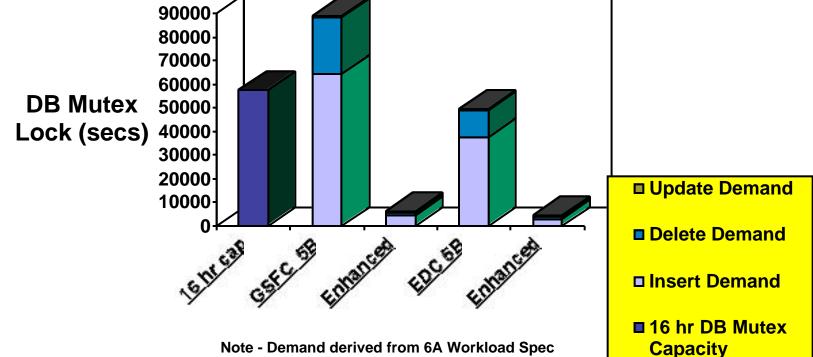
Action Plan (continued)

6 Issue: Search activity contends with Inserts, Updates for SQL Server locks

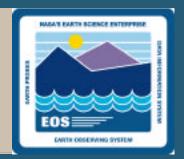
Action: Implement Isolation Level "Read Uncommitted" selectively to reduce DB lock contention

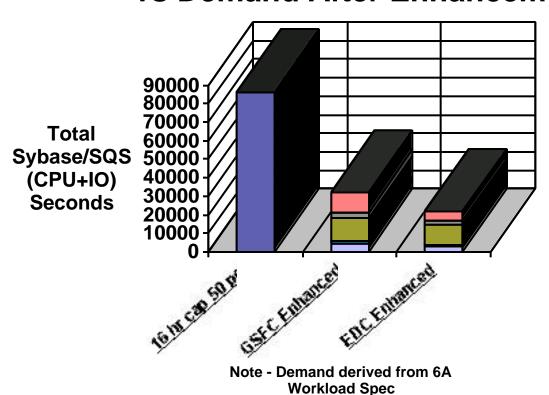

Estimated Improvement: Fliminates DR lock contention for Inserts Updates; Increases overall throughput by reducing (up to 2) retries from deadlocking

7 Additional Options


- Multiple SDSRV instances

*Note - see Benchmark Assumptions, slide 3


SDSRV 5B and 6A Comparison



SDSRV 5B and 6A Comparison

Sybase/SQS - Nominal Capacity (50 Percent) vs Demand After Enhancements

- □ Other Demand
 □ Acquire Demand
 □ Search Demand
 □ Delete Demand
 □ Insert Demand
- 16 hr Sybase/SQS Nominal Capacity (50 Percent)

PDPS Performance Improvements

Desryn Duncan

Requirements Summary

- Driven by capacity requirements outlined in the Drop 6A Release Plan <u>Appendix A - Release 6A Workload</u> <u>Specification</u>
- Key PDPS related system performance areas:
 - Planning:

Generate Data Processing Requests (DPR) from entered Production Requests

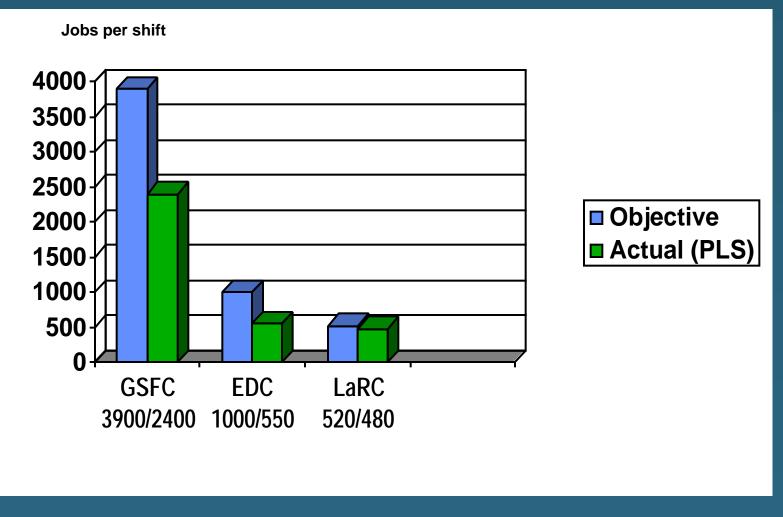
Process Subscription Notifications & Release DPR

- Processing:

Allocate & De-allocate Processing Resources for DPR Submit Staging & Destaging Requests to DSS

Key Design Drivers Methodology (PLS)

Objective: Produce Daily Plan in 8 Hours or Less


Executed Benchmarks using Instrumented Code

- Divided code into logical bins
- Measured cpu and wall-clock time for each bin
- Logged measurements to file
- Parsed and summed up results using scripts

Compared Capacity with Targets
Determined Key Areas for Improvement
Identified Technical Resolution

Key Design Drivers Objectives/Current Capacity (PLS)

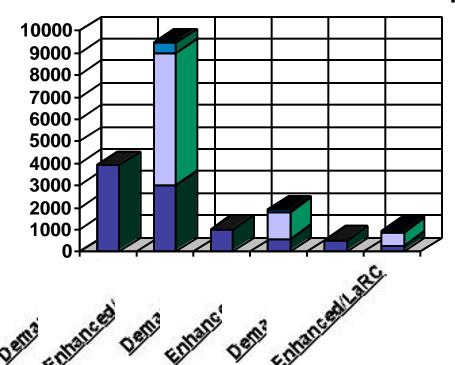
Key Design Drivers Action Plan (PLS)

 Issue: Populating DB with DPR inputs and outputs takes a long time (80-90% of Planning Time spent here!)

Action: Use stored procedures, streamline code, reduce repetitive object construction

Estimated Improvement: 300% for MODIS

Issue: Inefficient sorting of SDSRV search results


Action: Improve algorithm

Estimated Improvement: 15%

PLS 5B and 6A Comparison

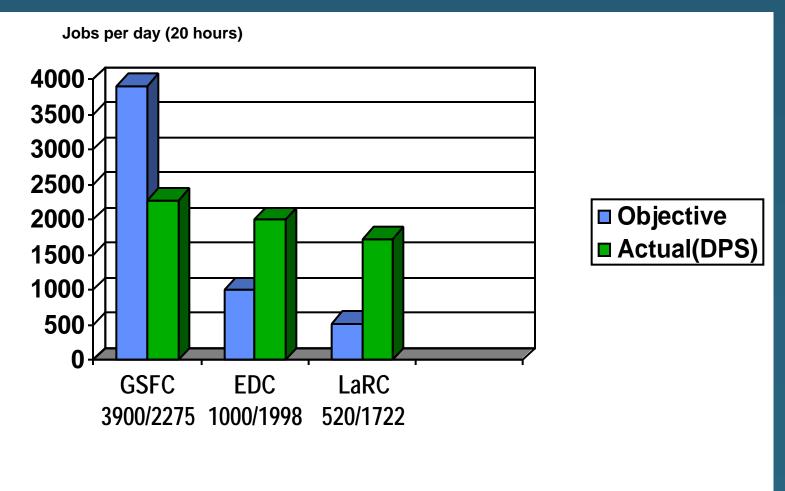
Demand vs Est. 6A Enhanced Capacity

Note - Demand derived from 6A Workload Spec

- **Improve Sort Alg.**
- **□ Stored Procedures**
- Demand

Key Design Drivers Methodology (DPS)

Objective: Throughput of DPS Components Equal or Better Daily Processing Workload


Developed DPS Simulator To Benchmark Current Capacity and Improvements

- PDPS database loaded with required PLS parameters
- DSS services stubbed out. Files retrieved from a directory
- Simple PGE script verifies accuracy of PCF file and generates output files specified in PCF
- Test measures throughput and loading of resources

Identified Promising Improvements Determined Technical Approaches

Key Design Drivers Objectives/Current Capacity (DPS)

Key Design Drivers Action Plan (DPS)

Issue: Resource Manager Overhead & Contention
 Action: Replace Lock Manager with stored procedures

Estimated Improvement: 35%

• Issue: CPU Capacity Is Bottleneck

Action: Increase CPU capacity to 4 x 336 MHz

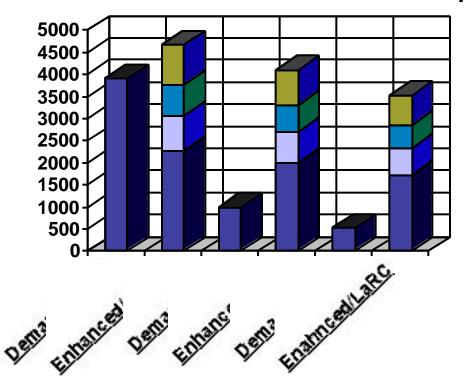
Estimated Improvement: 30%

• Issue: Autosys Event Handler Degrades As Jobs Increase

Action: Combine jobs in Autosys job box

Estimated Improvement: 40%

Key Design Drivers Action Plan (DPS)



- Additional Options Available
 - 1. Add Autosys instance
 - 2. Add Queueing Server boxes

DPS 5B and 6A Comparison

Demand vs Est. 6A Enhanced Capacity

Note - Demand derived from 6A Workload Spec

- □ Combined job boxes
- **Increased CPU**
- **□** Stored Procedures
- **□** Current

Other PDPS Performance Enhancements

- Subscription Notification
 Issue: Checking whether a DPR is ready to run takes a long time
- Deletion of DPRs
 Issue: The deletion process for DPRs takes a long time

Still evaluating both issues, but early results indicate gains will be made by using more stored procedures and improving the relevant algorithms.